Global uniqueness for an inverse boundary value problem arising in elasticity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness and Lipschitz Stability of an Inverse Boundary Value Problem for Time-harmonic Elastic Waves

where Ω is an open and bounded domain with smooth boundary, ∇̂u denotes the strain tensor, ∇̂u := 12 (∇u + (∇u)T ), ψ ∈ H(∂Ω) is the boundary displacement or source, and C ∈ L(Ω) denotes the isotropic elasticity tensor with Lamé parameters λ, μ: C = λI3 ⊗ I3 + 2μIsym, a.e. in Ω, where I3 is 3 × 3 identity matrix and Isym is the fourth order tensor such that IsymA = Â, ρ ∈ L(Ω) is the density, and...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

Inverse boundary value problem for Maxwell equations

We prove a uniqueness theorem for an inverse boundary value problem for the Maxwell system with boundary data assumed known only in part of the boundary. We assume that the inaccessible part of the boundary is either part of a plane, or part of a sphere. This work generalizes the results obtained by Isakov [I] for the Schrödinger equation to Maxwell equations. Introduction. Let Ω ⊂ R be a bound...

متن کامل

An Inverse Boundary-value Problem for Semilinear Elliptic Equations

We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2003

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-002-0276-1